
Roarquery

Adam Richie-Halford

May 01, 2024

CONTENTS

1 Features 3

2 Requirements 5

3 Installation 7

4 Usage 9

5 Contributing 11

6 License 13

7 Issues 15

8 Credits 17

Python Module Index 29

Index 31

i

ii

Roarquery

CONTENTS 1

https://pypi.org/project/roarquery/
https://pypi.org/project/roarquery/
https://pypi.org/project/roarquery
https://opensource.org/licenses/MIT
https://roarquery.readthedocs.io/
https://github.com/richford/roarquery/actions?workflow=Tests
https://codecov.io/gh/richford/roarquery
https://github.com/pre-commit/pre-commit

Roarquery

2 CONTENTS

CHAPTER

ONE

FEATURES

• Query ROAR runs

• Download ROAR runs and trials

• List ROAR Firestore collections

3

Roarquery

4 Chapter 1. Features

CHAPTER

TWO

REQUIREMENTS

• Python 3.9+

• fuego

5

https://sgarciac.github.io/fuego/

Roarquery

6 Chapter 2. Requirements

CHAPTER

THREE

INSTALLATION

You can install Roarquery via pip from PyPI:

pip install roarquery

Roarquery also requires you to install fuego, a command line firestore client. Please see the fuego documentation for
complete installation instructions.

On a Mac, follow these steps:

1. Ensure you have a working go installation. If

go version

returns something, then you are good to go. If not, install go with homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
→˓install.sh)"
brew install go

2. Then install fuego

git clone https://github.com/sgarciac/fuego.git
cd fuego
go build .
go install .

3. Finally, modify your PATH variable to include the go installation directory, which can be done with the following
incantation:

echo $HOME/go/bin | sudo tee -a /private/etc/paths.d/go

4. You may need to open a new terminal window or tab for these changes to take effect.

7

https://pip.pypa.io/
https://pypi.org/
https://sgarciac.github.io/fuego/#installation

Roarquery

8 Chapter 3. Installation

CHAPTER

FOUR

USAGE

4.1 Authentication

Before you can use Roarquery, you need to provide authentication details:

Roarquery works with both the current and legacy ROAR assessment databases. For example, the roarquery runs
subcommand accepts a –legacy parameter to access the legacy database. If you would like to use roarquery with both
databases, you will need to follow the steps below in both the legacy and current assessment Firebase projects.

1. Retrieve or generate a Service Account key file.

a. go to your Firebase project console,

b. go to “Project settings” (in the little gear menu next to “Project Overview”),

c. click on the “Service accounts” tab,

d. click on the “Generate new private key” button.

2. Save these files to somewhere on your computer. For example, presuming the previous commands downloaded
the files to “$HOME/Downloads/private_key.json” and “$HOME/Downloads/legacy_private_key.json”

mkdir -p "$HOME/.firebaseconfig"
mv "$HOME/Downloads/private_key.json" "$HOME/.firebaseconfig/private_key.json"
mv "$HOME/Downloads/legacy_private_key.json" "$HOME/.firebaseconfig/legacy_private_
→˓key.json"

3. Set the environment variable ROAR_QUERY_CREDENTIALS (or ROAR_QUERY_LEGACY_CREDENTIALS
for the legacy database) to point to these files.

echo "export ROAR_QUERY_CREDENTIALS=\"$HOME/.firebaseconfig/private_key.json\"" >> ~
→˓/.zprofile
echo "export ROAR_QUERY_CREDENTIALS=\"$HOME/.firebaseconfig/private_key.json\"" >> ~
→˓/.bash_profile
echo "export ROAR_QUERY_LEGACY_CREDENTIALS=\"$HOME/.firebaseconfig/legacy_private_
→˓key.json\"" >> ~/.zprofile
echo "export ROAR_QUERY_LEGACY_CREDENTIALS=\"$HOME/.firebaseconfig/legacy_private_
→˓key.json\"" >> ~/.bash_profile

9

https://console.firebase.google.com

Roarquery

4.2 Command-line Usage

Please see the Command-line Reference for details.

10 Chapter 4. Usage

usage.html

CHAPTER

FIVE

CONTRIBUTING

Contributions are very welcome. To learn more, see the Contributor Guide.

11

contributing.html

Roarquery

12 Chapter 5. Contributing

CHAPTER

SIX

LICENSE

Distributed under the terms of the MIT license, Roarquery is free and open source software.

13

https://opensource.org/licenses/MIT

Roarquery

14 Chapter 6. License

CHAPTER

SEVEN

ISSUES

If you encounter any problems, please file an issue along with a detailed description.

15

https://github.com/richford/roarquery/issues

Roarquery

16 Chapter 7. Issues

CHAPTER

EIGHT

CREDITS

This project was generated from @cjolowicz’s Hypermodern Python Cookiecutter template.

8.1 Usage

8.1.1 roarquery

Roarquery.

Roarquery is a command-line interface for querying ROAR data in Google Cloud Firestore. It has several subcom-
mands, which are listed below.

roarquery [OPTIONS] COMMAND [ARGS]...

Options

--version

Show the version and exit.

Useful definitions:
- trial: a single stimulus/response pair
- run: globally unique collection of successive trials.

This constitute “running” through the task one time.
- corpus: A named and immutable collection of stimuli
- block: A portion of a run whose stimuli are drawn from only one corpus.
- task: the activity or assessment that was performed in a run (e.g. SWR, PA, SRE, etc.)
- task-variant: a specification of the task, e.g. adaptive vs. random; 1 vs 3 blocks
- school, district, class: all assume the standard meaning
- study: a collection of runs associated with a research project

17

https://github.com/cjolowicz
https://github.com/cjolowicz/cookiecutter-hypermodern-python

Roarquery

runs

Return ROAR runs matching certain query parameters.

The options described below can be combined to return runs that match all of the specified query parameters.

b Arguments:

OUTPUT FILENAME Path to the output file to which to save runs/trials.

roarquery runs [OPTIONS] OUTPUT_FILENAME

Options

--legacy

Return trials from the legacy database

Default
False

--roar-uid <roar_uid>

Return only runs for the user with this ROAR UID.

--pid-prefix <pid_prefix>

Return only runs for users with this prefix.

--task-id <task_id>

Return only runs for this task.

--study-id <study_id>

Return only runs for this study. Only supported in the legacy database.

--variant-id <variant_id>

Return only runs for this variant.

--district-id <district_id>

Return only runs for this district.

--school-id <school_id>

Return only runs for this school.

--class-id <class_id>

Return only runs with this class.

--group-id <group_id>

Return only runs with this group. Only supported in the current database.

--require-completed

Require all runs to be completed.

Default
False

--started-before <started_before>

Return only runs started before this date. Format: YYYY-MM-DD.

--started-after <started_after>

Return only runs started after this date. Format: YYYY-MM-DD.

18 Chapter 8. Credits

Roarquery

--return-trials

Return the trials for each run as well.

--root-doc <root_doc>

The Firestore root document. Returned runs will all be under this document.

Arguments

OUTPUT_FILENAME

Required argument

Examples:

Return trials for the “swr” task in the “validation” study.

roarquery runs --task-id=swr --study-id=validation --return-trials trials.csv

Return runs for the “sre” task in the “sd” district that started after 2021-05-10.

roarquery runs --task-id=sre --district-id=sd --started-after=2021-05-10 runs.
csv

8.2 Reference

8.2.1 roarquery.runs

Query and return ROAR runs.

roarquery.runs.filter_run_dates(runs, started_before=None, started_after=None)
Filter runs by date.

Parameters

• runs (List[Dict[str, Any]]) – The runs to filter.

• started_before (date, optional, default=None) – Return only runs started before
this date.

• started_after (date, optional, default=None) – Return only runs started after this
date.

Returns
The filtered runs.

Return type
List[Dict[str, Any]]

8.2. Reference 19

Roarquery

Examples

>>> runs = [
... {
... "CreateTime": "2020-01-01T00:00:00.000Z",
... "Data": {
... "name": "run-1",
... "timeStarted": "2020-01-01T00:00:00.000Z",
... "classId": "class-1",
... "completed": "true",
... },
... "ID": "run-1",
... "Path": "prod/roar-prod/runs/run-1",
... "ReadTime": "2020-01-01T00:00:00.000Z",
... "UpdateTime": "2020-01-01T00:00:00.000Z",
... },
... {
... "CreateTime": "2020-02-01T00:00:00.000Z",
... "Data": {
... "name": "run-2",
... "timeStarted": "2020-02-01T00:00:00.000Z",
... "classId": "class-2",
... "completed": "true",
... },
... "ID": "run-2",
... "Path": "prod/roar-prod/runs/run-1",
... "ReadTime": "2020-02-01T00:00:00.000Z",
... "UpdateTime": "2020-02-01T00:00:00.000Z",
... },
...]
>>> filtered = filter_run_dates(runs, started_before=date(2020, 1, 15))
>>> print(filtered == [runs[0]])
True

roarquery.runs.get_runs(return_trials=False, query_kwargs=None, started_before=None,
started_after=None, user_type='users', merge_user_info=True)

Get all runs that satisfy a specific query.

Parameters

• return_trials (bool, optional, default=False) – If True, return the trials for each
run as well.

• query_kwargs (dict, optional, default=None) – The query to run. If None, all runs
will be returned.

• started_before (date, optional, default=None) – Return only runs started before
this date.

• started_after (date, optional, default=None) – Return only runs started after this
date.

• user_type (str, optional, default="users") – The user type to query. Either
“users” or “guests”.

• merge_user_info (bool, optional, default=True) – If True, merge the user doc info
into the run data.

20 Chapter 8. Credits

Roarquery

Returns
The runs that satisfy the query.

Return type
List[dict]

roarquery.runs.get_runs_compat(root_doc='prod/roar-prod', return_trials=False, query_kwargs=None,
started_before=None, started_after=None, merge_user_info=False)

Get all runs that satisfy a specific query.

Parameters

• root_doc (str, optional, default="prod/roar-prod") – The Firestore root docu-
ment. The returned runs will all be under this document.

• return_trials (bool, optional, default=False) – If True, return the trials for each
run as well.

• query_kwargs (dict, optional, default=None) – The query to run. If None, all runs
will be returned.

• started_before (date, optional, default=None) – Return only runs started before
this date.

• started_after (date, optional, default=None) – Return only runs started after this
date.

• merge_user_info (bool, optional, default=False) – If True, merge the user doc
info into the run data.

Returns
The runs that satisfy the query.

Return type
List[dict]

roarquery.runs.get_trials_from_run(run_path)
Get all trials from a run.

Parameters
run_path (str) – The Firestore path to the run.

Returns
The trials from the run.

Return type
List[Dict[str, str]]

roarquery.runs.get_user_from_run(run_path, legacy=False)
Get the user that owns a run.

Parameters

• run_path (str) – The Firestore path to the run.

• legacy (bool, optional) – If True, the returned user will be identified by PID, otherwise
the user will be identified by roarUid. Default: False.

Returns
The user that owns the run.

Return type
List[Dict[str, str]]

8.2. Reference 21

Roarquery

roarquery.runs.merge_data_with_metadata(fuego_response, metadata_params)
Merge trial data with metadata.

We often want to merge the run/trial data with some of the metadata returned by Firestore. In Python 3.9 we
could use the | operator but we want to be backward compatible so we iterate over the data and metadata and
merge them together.

Parameters

• fuego_response (List[Dict[str, Any]]) – The trial data.

• metadata_params (Dict[str, str]) – The metadata fields that will be merged into the
data. The keys are the desired keys in the merged data and the values are the metadata keys
to use.

Returns
The merged data.

Return type
List[Dict[str, Any]]

8.2.2 roarquery.collections

Query Firestore collections.

roarquery.collections.get_collections()

Get collections from a database.

Return type
List[str]

8.2.3 roarquery.utils

Utilities functions.

roarquery.utils.bytes2json(bytes)
Convert bytes to json.

Parameters
bytes (bytes) – The bytes to convert.

Returns
The converted json.

Return type
List[_FuegoResponse]

Examples

An empty string will return an empty list: >>> bytes2json(b””) []

>>> json_out = bytes2json(
... b'[{"ID": "1", "Data": {"a": "b"}, "Path": "prod/roar-prod", '
... b'"CreateTime": "2020-04-01T00:00:00Z", '
... b'"ReadTime": "2020-04-01T00:00:00Z", '
... b'"UpdateTime": "2020-04-01T00:00:00Z"}]'

(continues on next page)

22 Chapter 8. Credits

Roarquery

(continued from previous page)

...)
>>> print(json_out == [{
... 'ID': '1',
... 'Data': {'a': 'b'},
... 'Path': 'prod/roar-prod',
... 'CreateTime': '2020-04-01T00:00:00Z',
... 'ReadTime': '2020-04-01T00:00:00Z',
... 'UpdateTime': '2020-04-01T00:00:00Z'
... }])
True

roarquery.utils.camel_case(string)
Convert a string to camel case.

Parameters
string (str) – The string to convert.

Returns
The camel case string.

Return type
str

Examples

>>> camel_case("an_example_string")
anExampleString

>>> camel_case("an-example-string-with-dashes")
anExampleStringWithDashes

roarquery.utils.drop_empty(iterable)
Drop empty strings from a list.

Parameters
iterable (list) – The list to drop empty strings from.

Returns
The list with empty strings dropped.

Return type
list

Examples

>>> drop_empty(["", "a", "", "b"])
['a', 'b']

roarquery.utils.page_results(query, limit=None)
Page through results from a query.

Parameters

8.2. Reference 23

Roarquery

• query (List[str]) – The query to run. This is a list of strings that will be passed to
subprocess.check_output.

• limit (int, optional, default=100) – The number of results to return per page.

Returns
The results of the query.

Return type
List[_FuegoResponse]

roarquery.utils.trim_doc_path(path)
Remove leading project information from firestore document path.

Parameters
path (str) – The path to standardize.

Returns
The standardized path.

Return type
str

Examples

>>> trim_doc_path("projects/proj-id/databases/(default)/documents/prod/roar-prod")
prod/roar-prod

8.3 Contributor Guide

Thank you for your interest in improving this project. This project is open-source under the MIT license and welcomes
contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

• Source Code

• Documentation

• Issue Tracker

• Code of Conduct

8.3.1 How to report a bug

Report bugs on the Issue Tracker.

When filing an issue, make sure to answer these questions:

• Which operating system and Python version are you using?

• Which version of this project are you using?

• What did you do?

• What did you expect to see?

• What did you see instead?

24 Chapter 8. Credits

https://opensource.org/licenses/MIT
https://github.com/richford/roarquery
https://roarquery.readthedocs.io/
https://github.com/richford/roarquery/issues
codeofconduct.html
https://github.com/richford/roarquery/issues

Roarquery

The best way to get your bug fixed is to provide a test case, and/or steps to reproduce the issue.

8.3.2 How to request a feature

Request features on the Issue Tracker.

8.3.3 How to set up your development environment

You need Python 3.9+ and the following tools:

• Poetry

• Nox

• nox-poetry

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session, or the command-line interface:

$ poetry run python
$ poetry run roarquery

8.3.4 How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session. For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory, and are written using the pytest testing framework.

8.3.5 How to submit changes

Open a pull request to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

• The Nox test suite must pass without errors and warnings.

• Include unit tests. This project maintains 100% code coverage.

• If your changes add functionality, update the documentation accordingly.

8.3. Contributor Guide 25

https://github.com/richford/roarquery/issues
https://python-poetry.org/
https://nox.thea.codes/
https://nox-poetry.readthedocs.io/
https://pytest.readthedocs.io/
https://github.com/richford/roarquery/pulls

Roarquery

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by
running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything. This will allow a chance to talk it over with the
owners and validate your approach.

8.4 Contributor Covenant Code of Conduct

8.4.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

8.4.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

8.4.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

26 Chapter 8. Credits

Roarquery

8.4.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

8.4.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at richiehalford@gmail.com. All complaints will be reviewed and investigated promptly and
fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

8.4.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

8.4. Contributor Covenant Code of Conduct 27

mailto:richiehalford@gmail.com

Roarquery

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

8.4.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

8.5 MIT License

Copyright © 2022 Adam Richie-Halford

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

The software is provided “as is”, without warranty of any kind, express or implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the
authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract,
tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the
software.

28 Chapter 8. Credits

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

PYTHON MODULE INDEX

r
roarquery.collections, 22
roarquery.runs, 19
roarquery.utils, 22

29

Roarquery

30 Python Module Index

INDEX

Symbols
--class-id

roarquery-runs command line option, 18
--district-id

roarquery-runs command line option, 18
--group-id

roarquery-runs command line option, 18
--legacy

roarquery-runs command line option, 18
--pid-prefix

roarquery-runs command line option, 18
--require-completed

roarquery-runs command line option, 18
--return-trials

roarquery-runs command line option, 18
--roar-uid

roarquery-runs command line option, 18
--root-doc

roarquery-runs command line option, 19
--school-id

roarquery-runs command line option, 18
--started-after

roarquery-runs command line option, 18
--started-before

roarquery-runs command line option, 18
--study-id

roarquery-runs command line option, 18
--task-id

roarquery-runs command line option, 18
--variant-id

roarquery-runs command line option, 18
--version

roarquery command line option, 17

B
bytes2json() (in module roarquery.utils), 22

C
camel_case() (in module roarquery.utils), 23

D
drop_empty() (in module roarquery.utils), 23

F
filter_run_dates() (in module roarquery.runs), 19

G
get_collections() (in module roarquery.collections),

22
get_runs() (in module roarquery.runs), 20
get_runs_compat() (in module roarquery.runs), 21
get_trials_from_run() (in module roarquery.runs),

21
get_user_from_run() (in module roarquery.runs), 21

M
merge_data_with_metadata() (in module roar-

query.runs), 21
module

roarquery.collections, 22
roarquery.runs, 19
roarquery.utils, 22

O
OUTPUT_FILENAME

roarquery-runs command line option, 19

P
page_results() (in module roarquery.utils), 23

R
roarquery command line option

--version, 17
roarquery.collections

module, 22
roarquery.runs

module, 19
roarquery.utils

module, 22
roarquery-runs command line option

--class-id, 18
--district-id, 18
--group-id, 18
--legacy, 18

31

Roarquery

--pid-prefix, 18
--require-completed, 18
--return-trials, 18
--roar-uid, 18
--root-doc, 19
--school-id, 18
--started-after, 18
--started-before, 18
--study-id, 18
--task-id, 18
--variant-id, 18
OUTPUT_FILENAME, 19

T
trim_doc_path() (in module roarquery.utils), 24

32 Index

	Features
	Requirements
	Installation
	Usage
	Authentication
	Command-line Usage

	Contributing
	License
	Issues
	Credits
	Usage
	roarquery
	runs

	Reference
	roarquery.runs
	roarquery.collections
	roarquery.utils

	Contributor Guide
	How to report a bug
	How to request a feature
	How to set up your development environment
	How to test the project
	How to submit changes

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	MIT License

	Python Module Index
	Index

